Generalized Jordan derivation on nest algebras
نویسندگان
چکیده
منابع مشابه
Generalized sigma-derivation on Banach algebras
Let $mathcal{A}$ be a Banach algebra and $mathcal{M}$ be a Banach $mathcal{A}$-bimodule. We say that a linear mapping $delta:mathcal{A} rightarrow mathcal{M}$ is a generalized $sigma$-derivation whenever there exists a $sigma$-derivation $d:mathcal{A} rightarrow mathcal{M}$ such that $delta(ab) = delta(a)sigma(b) + sigma(a)d(b)$, for all $a,b in mathcal{A}$. Giving some facts concerning general...
متن کاملJordan derivation on trivial extension
Let A be a unital R-algebra and M be a unital A-bimodule. It is shown that every Jordan derivation of the trivial extension of A by M, under some conditions, is the sum of a derivation and an antiderivation.
متن کاملgeneralized sigma-derivation on banach algebras
let $mathcal{a}$ be a banach algebra and $mathcal{m}$ be a banach $mathcal{a}$-bimodule. we say that a linear mapping $delta:mathcal{a} rightarrow mathcal{m}$ is a generalized $sigma$-derivation whenever there exists a $sigma$-derivation $d:mathcal{a} rightarrow mathcal{m}$ such that $delta(ab) = delta(a)sigma(b) + sigma(a)d(b)$, for all $a,b in mathcal{a}$. giving some facts concerning general...
متن کاملAdditivity of Jordan Triple Product Homomorphisms on Generalized Matrix Algebras
In this article, it is proved that under some conditions every bijective Jordan triple product homomorphism from generalized matrix algebras onto rings is additive. As a corollary, we obtain that every bijective Jordan triple product homomorphism from Mn(A) (A is not necessarily a prime algebra) onto an arbitrary ring R is additive.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2009
ISSN: 0024-3795
DOI: 10.1016/j.laa.2007.10.020